Unified Modeling Language

UML 2.0 fundamentals

Gheorghe Aurel Pacurar

What is UML?

1. Unified Modeling Language
2. Domain - the World of the Problem
3. Model - the Solution for Problem - consists of:
4. Objects (Attributes, Behaviors => State)
9. Messages (Interactions between Objects)
6. UML - a set of static and dynamic Diagrams for a model
graphical representation:
Static Diagrams Dynamic Diagrams
No time rep;esented Time represc;nted
Use case Sequence
Class - package,objects Collaboration
Com por;ent Statechart

Unified Modeling
Language:

|s the software

Why UML ? blueprint language for:

* Analysts
* Designers
e Programmers

1. Use Case Diagrams

A Use Case is a summary of scenarios for a
single task or goal.

A Scenario is an example of what happens
when an actor (someone) plays (interacts) in a
show (with the system).

Example

Patient

- ¥

After analysis, we
can find the
following:

Scenario: ,,A
patient calls the
Clinic to make an
appointment for a
yearly checkup. The
receptionist finds
the nearest empty
timeslotinthe
appointment book
and schedules the
appointment for
thattime slot“

@ a Clinic, receive the @

Actors: Patient,
Clinic,
Receptionist,
Appointment Book,
Scheduler

Clinic

1

] e

Interactions: The
patient calls the
Clinic to make an
appointment. The
Receptionist
receives the
Patient‘s call, finds
the nearest free
timeslotinthe
Appointment Book,
and schedules the
Appointment in the
Appointment Book.

e

=

| S -'.—-_f\-‘-irz’ !
- — s

Receptionist

Find
nearest
free time
slot

Find
nearest
free time
slot

Appointment
Book

Use Case Diagram for Clinical
Appointment

Call for an Appointment Search for & free time slot

Search and check a
time slat

Use Case Diagrams
Extensions

Generalization : one Child Use Case is only a special kind of
another Parent Use Case

Include relationship factor use cases into additional ones.

Mﬂnﬂﬂ@w : o [her B Use C The B U
Case must define an Extension Point that determines when
the Extended Use Case is appropriate.

Use Case Diagrams Extensions

Cammunicate
Fatient Daten

CZlinic

Communicate the

Patient Appointment

X

Heceptlunlst

ndlﬁ,r Fatient Daten
<':exten|:|=->

[et Patlent]

Create Mew
Patient Daten y

Search for a free time slot

““=—— Scheduler

~=~=|nclude=~=~ |

Communicate
selected time slot

Search and check a
tirme slat

Appointment Book

2. Class Diagrams

e

It gives an overview of a system by showing its classes and their

relationships.

Class diagrams are static -- they display what interacts but not
what happens when they do interact.

UML class notation is a rectangle divided into three parts: class
name, attributes, and operations. Names of abstract classes are in
italics. Relationships between classes are the connecting links.

Example

multiplicity

Customer Order
natme 1 0.* | date
address & status
association calcTax
calcTotal
Payment *
a.b-stractcl:rss"""* y 1.) T calcTotatweight
armount 1
role name
generalization . »
1‘1‘ line itern | 1.%
| | | OrderDetail
Credit Cash Check _
fuantity
number cashTendered name taxStatus
type hanklD
expDate calcSubTotal
autharized calceight
autharized

ltem -¢———— class name
shippingWeight \
| attributes
description h
petPriceF or2iuantity
geteight «—|—— operations

navigability

Class Diagrams - Relationships

A class diagram has three kinds of relationships:

Association -- a relationship between instances of the two classes. There is an association between two
classes if an example of one class must know about the other to performits work. In a diagram, an association
is a link connecting two classes.

An association has two ends. An end may have a role name to clarify the nature of the association (for
example, an OrderDetail is a line item of each Order).

Aggregation -- an association in which one class belongs to a collection. An
aggregation has a diamond end pointing to the part containing the whole (In our
diagram, Order has a collection of OrderDetails).

Generalization -- an inheritance link indicating one class is a superclass of the other. A
generalization has a triangle pointing to the superclass (Paymentis a superclass of
Cash, Check, and Credit).

“| Class Diagrams -
Relationships

Multiplicities | Meaning

* A navigability arrow on an association : 0..1 Zero or On'e Instance.
The notationn..m
Shows which direction the association can be indicates nto m
travgrsed or qened (An OrderD_etall can be instances.0
queried aboutits Item, but notvice versa).
The arrow also lets you know who "owns"the ¥or* no limit on the
association's implementation number of instances

(in this case, OrderDetail has an Item).

Associations with no navigability arrows are (I ncludi ng none)'

bi-directional. .
1 exactly one instance
* The multiplicity of an association end : 1..% at least one instance

Is the number of possible class instances
associated with a single instance of the other
end.

Are single numbers orranges of numbers (In
our example, there can be only one Customer
for each Order, but a Customer can have any
number of Orders).

Class Diagrams - Relationships

* All class diagrams have classes, links, and multiplicities. But a class I
diagram can show even more information. We've already looked at:

* generalization,
* aggregation, and
* navigability.
* Onthis page, we will look at these additional items as well.
* compositions
* class membervisibility and scope
* dependencies and constraints
* interfaces

Class Diagrams — Relationships - Composition

Composition is a strong association in which the
part can belong to only one whole -- the part cannot
exist without the whole.

whole

»

MowvieTheater

1

-

BoxOffice

"~

o.*

0.*

Mowvie

composition

Tkw- aggregation

<— part

+— part

This diagram shows that a BoxOffice belongs to exactly one MovieTheater. Destroy
the MovieTheater and the BoxOffice goes away! The collection of Movies is not so
closely bound to the MovieTheater

Class Diagrams — Relationships - accessibility and scope

* Theclass notation is a 3-piece rectangle with the class name, attributes,
and operations.

 Attributes and operations can be labeled according to access and scope.

Order

private —y|eiate Date Access specifiers*
-shipped:hoolean Symbol ACCESS

public | Ecancelvoid
+calcSubTotald:Money
+ralcTaxt:Money
+ralcTotal(:Money _
+calcTotalWeight(:Decimal —— Parameter list # protected

+setShinDate(d D ate)void *appear in front of

+Ewerag:leElrn:Ier‘u“nfeig:lh’[i]:Dlecir’nal_lE class e (static
+E|'-.fErEIQEGrdEFTDtElH]ZMDﬂE'fH"’# pe () each member.

.— return type + DUb“C

- private

UML Scope and Visibility Conventions:

1.Static members are underlined. Instance members are not.

2.The operations follow this form:

<access specifier> <name> (<parameter list>) : <return type>

3.The parameter list shows each parameter type preceded by a colon.

Class Diagrams — Dependencies and constraints

A dependency is a relation between two classes in which a change in one may
force changes in the other. Dependencies are drawn as dotted lines (In the class
diagram below, Co_op depends on Company. If you decide to modify Company,

you may have to change Co_op too).

A constraint is a condition that every implementation of the design must satisfy.
Constraints are written in curly braces { { The constraint on our diagram indicates
that a Section can be part of a CourseSchedule only if it is not canceled).

Course Section
-hame:String 1 g * | -timeTime
-id:CallMurmber Fo -semesterDate

-cancelled:Boolean

prerequisite

0.* .
- +cancelvaid

1 {?
0.*% | fnotcancelled?
Company 0.* \ constraint

+getDescription(:String

CourseSchedule
-name:String
-semester:Date
[f
L _ o na
o +enroll{c:Course)void Student
.-

e

Co op -harme:String
dependency -rnajorString

0.1

-zemester:Date

+plansemester{S:Date)vaid

+getCompary:Campany

Class Diagrams — Interfaces and stereotypes

An interface is a set of operation signatures and a communication protocol.

A class with operations matching those in an interface is an implementation (or realization) of the

£f)

interface.

Stereotypes, which provide a way of extending UML, are new kinds of model elements created from existing kinds. A stereotype nameis

it

The class diagram is a
model of a professional
conference. The classes of
interest to the conference
are SessionTalk, a single
presentation, and Session,
a one-day collection of
related SessionTalks. The
ShuttleSchedule, with its
list of ShuttleStops, is
essential to the attendees
staying at remote hotels.
The diagram has one
constraint: the
ShuttleStops are ordered.

is a special kind of stereotype.

ShuttleSchedule

1 1.7

+datefi:Date
I

==places=<4 —«\-

ShuttleStop

{ordered}

+location(: String

I P
interface o ﬁ-
v / \\ el ',
interface Y interface J
Dated ¥ ocatabie I.
+oiate(). Date +location):Sting | |
,/t}fmpﬂemenmt
'Q:;,H - & kﬁh‘*—-h____ -~
- | >
= - | SessionTalk
Session
1 1.* | -title:String
+datei:Date .
: b +stop (i Time
locat -5t
+ocation(y:sting +stant:Time

written above the class name. Ordinary stereotype names are enclosed in guillemots, which look like pairs of angle braces. An interface

stereotype notation

interface
ITired

+atar) Time
+ st Time

jon 5.
-~

-

Class Diagrams — Interfaces and stereotypes

An interface is a set of operation signatures and a communication protocol.

A class with operations matching those in an interface is an implementation (or realization) of the
interface.

Stereotypes, which provide a way of extending UML, are new kinds of model elements created from existing kinds. A
m stereotype name is written above the class name. Ordinary stereotype names are enclosed in guillemots, which look like
pairs of angle braces. An interface is a special kind of stereotype.

ShuttleSchedule ==places==
1 1.% ShuttleStop
There are two +date(Date fordered}
acceptable notations — +location(:String

for interfaces in the -

-~
-~ —
UML. (ﬁf/_r Jinli.‘s,'r,r‘m:s:-\.tD ﬁx ITC}
- - med
The first was illustrated el
n“&

. - - K ocatabie fj
in the previous slide. o ;””
The second uses the - /7 L
} } - 7 /
lollipop or circle : SessionTalk
. Session
notation.

1 * | -title:5tring

i

+date).Date

+location():String +stop(Time

+stant) Time

3. Packages and
Object Diagram

Accounting /= —— — — — / — — — Bank
* To simplify complex class aTx ‘\
1<

diagrams, you can group

classes into packages.] []]

« Apackage is a collection of W__|—— | Ordering |——— —> Shipping
logically related UML 7 7
elements. : | : |

I I

* The dotted arrows are —V—‘ :

dependencies. One package package J_‘

CustomerDB StockDBE

depends on another if
changes in the other could
force changes in the first.

Example

This small class diagram shows that a university
Department can contain lots of other Departments.

Department

-degree: 5tring[]={"araduate” "undergraduate” "both™}

0.*

1

subdepartment

Packages and Object Diagram

* The object diagram below
instantiates the class diagram,
replacing it by a concrete
example.

 Eachrectangle in the object
diagram corresponds to a
single instance. Instance
names are underlined in UML
diagrams. Class or instance
names may be omitted from
object diagrams as long as the
diagram meaning is still clear.

instance name _“-__\‘l 1/,——— class name

mathStat:Department

statistics:Department

math:Department

appliedMath:Department

mathEd:Department

4. Component and Deployment Diagram

e Acomponentisacode module. Component diagrams are physical
analogs of class diagram.

 Deployment diagrams show the physical configurations of software and

hardware.

* The physical hardware is made up of nodes. Each component belongs on a

node.

Bank Server

==Database=» Mortgage Application
CustomerDB

;mgr_ra;efﬁhﬂur’tgageﬁpphcatmn

NG

Feal Estate Server

Listin
% ==ind ==5torage==
— —= MultipleListings

@ \ component

ILlstmg

TCRIP

aPC -~
-

M
|
|
|
|
|
|

% Buyerlnterface

_.-"'

T—— dependency

TCRIAP

*__,/'J

connection

5. Sequence Diagrams

Interaction diagrams are dynamic diagrams that describe how objects
collaborate.

A sequence diagram is an interaction diagram that details how operations
are carried out, such as what messages are sent and when.

Sequence diagrams are organized according to time.

The time progresses as you go down the page.

The objects involved in the operation are listed from left to right according
to when they take part in the message sequence.

Sequence
Diagrams -

Example

object >

window
Lzerlnterface

makeReseration(void

* The exampleis a sequence diagram for
making a hotel reservation. The object
initiating the sequence of messages is a
Reservation window.

aChain
HuotelChain

aHotel
Hatel

==L

M«

A
- message

deletion

makeResemnationvaid

fE==

A
N

activation bar

——— lifeline ———»

T

—h..

iteration

for each day] isRoom=availabled:boolean

¥ condition
[isRoom]

aResenvation
Resendation

creation Z —

note x\‘

A reservation
canfirmatian,

If a room is available for
each day of the stay, make

and send a

alotice
Caonfirmation

N

Seqguence Diagrams

* The Reservation window sends a makeReservation() message to a HotelChain. The
HotelChain then sends a makeReservation() message to a Hotel. If the Hotel has
available rooms, it makes a Reservation and a Confirmation.

* Each vertical dotted line is a lifeline, representing the time that an object exists.
Each arrow is a message call. An arrow goes from the sender to the top of the
activation bar of the message on the receiver's lifeline.

* The activation bar represents the duration of execution of the message.

* Inourdiagram, the Hotel issues a self-call to determine if aroom is available. If so,
the Hotel creates a Reservation and a Confirmation. The asterisk on the self-call
means iteration (to ensure the room is available for each day of the stay in the hotel).
The expression in square brackets, [], is a condition.

* The diagram has a clarifying note, text inside a dog-eared rectangle. Notes can be
putinto any UML diagram.

Sequence diagrams with
asynchronous messages

* A message is asynchronous if it allows its sender to send
additional messages while processing the original. The timing of
an asynchronous message is independent of the timing of the
iIntervening messages.

The following sequence diagram illustrates the action of a nurse
requesting a diagnostic test at a medical lab. There are two
asynchronous messages from the Nurse:

1)Ask the MedicallLab to reserve a date for the test and

2)Ask the InsuranceCompany to approve the test.

The order in which these messages are sent or completed is
irrelevant. If the InsuranceCompany approves the test, then the
Nurse will schedule the test on the date supplied by the MedicallLab.

Sequence
diagrams with
asynchronous
messages -
Example

alurse aMedicallLah aninsuranceCompamy
Staff Lab Insurer
I
1
date:= reseweLab{test}f \
asynchronous

Ck=approvelte st

_,-"’-l Message

| [2k] scheduleitest date)

g

:

Ifthe insurance company approves,

schedule the test.

Feserve the lab far a patient test. Ij

Sequence diagrams
UML message conventions.

Meaning

simple message which may be synchronouws ar asynchronaous

simple message return (optional)

a synchronous message

=1 EIS'}."FIEhFEIFIEILJS message

6. Collaboration

Diagrams

window:Userinterface

aChain:HotelChain

~ message

L
#1 1 makeReservationd s aid

object

{]’1 .1 makeResenationdvoid

/~ sequence number

itemt[lon

aHotel:Hotel

Y
1.1.1.2:fisRoom] &=

Collaboration diagrams are also interaction
diagrams.
They convey the same information as sequence

diagrams, but they focus on object roles instead
of the times that messages are sent.

In a sequence diagram, object roles are the
vertices, and messages are the connecting links.

- self link

v

aReservation:Reservation | , ; ; 54 —= aNotice:Confirmation

1.1.1.1:*[far each day] isRoorm:=availabled:hoolean —T=

* The object-role rectangles are labeled with either class or
object names (or both). Class names are preceded by colons

Collaboration ().

¢ Each message in a collaboration diagram has a sequence
number. The top-level message is numbered 1. Messages at

D |a gra m S the same level (sent during the same call) have the same

decimal prefix but suffixes of 1, 2, etc., according to when
they occur.

window:Userinterface

~ message

L
#1 1 makeReservationd s aid

aChain:HotelChain

- object

{]’1 .1 makeResenationdvoid

/~ sequence number

aHotel:Hotel A i i aNotice:Confirmation
SR 111 2(isRoom] —+= |aReservation:Reservation |4 4 4 54

iteration +— self link

v

1.1.1.1:*[far each day] isRoorm:=availabled:hoolean —T=

* Objects have behaviors and states.

* The state of an object depends on its current activity or
7. State chart condition.

* A state chart diagram shows the possible states of the

Diagra ms objectand the transitions that cause a state change.

* From each state comes a complete set of transitions that
determine the subsequent state.

initial state

ICurgorto 35M

@ Rejecting]

Canceliduit | -

Getting 55N

RetryiClear SN, FIN entries event guard activity

¥
FPress key[keyt ta b]IDispr;;y ke

[hotvalidiDisplay efror message submit \
- transition —"" Press shifi-tab OR move cursar to

S5M field/Cursor to S5M

Press tah OR move cursor to PIR
fieldfCursorta PIN

[Getting PIN e State

/ final state
/

5' i Validating 3
valid)iStart transaction | “°aIdate 55N and P'NJ submit
_ ~— action

.

Press keylkey = shift-tab)iDisplaydot

State chart

« Statesin a state chart diagram can be nested.
D|agrams — Related §tates can be g_rouped |nt.o a single
composite state. Nesting states is necessary
concurrency and when an activity involves concurrent or
: : asynchronous sub-activities.
synchronization Y
composite state A l J
i “-\ = Auction N
AN
i "R BN Oy | N
. _ _———substate
| Getting Bid Ireject continuel Evaluating | [accept] _ [Accepting |
[-
'-,) ot -\) |) ¥ Join
II
| - ,; (Purchased
hread ~
hrea A‘, i Authorizing Credit A l_J
f
{
L Checking [authorized] K
¥ 4 | |
N e J)
fork
L -~
. iy

8. Activity Diagrams

Activity diagrams can
be divided into object
swim lanes that
determine which
object is responsible
for which activity. A
single transition
connects each activity
to the next activity.

A transition may
branch into two or
more mutually
exclusive transitions.
Guard expressions
(inside []) label the
transitions from a
branch. A branch and
its subsequent merge
marking the end of the
branch appear in the
diagram as hollow
diamonds.

A transition may fork
into two or more
parallel activities. The
fork and the
subsequent join of the
threads coming out of
the fork appear in the
diagram as solid bars.

Custarner ATM Machine ‘Bank
44— start
Ihzer card
N activity
[Enterpin 3} Authorize ~guard expression
branch -, +
(" Enteramount pralic PIN Y lrméalid PIN]
R
-
{_ Check account balance)
[balance == amount] \l/ [balance = amauni]
k
‘(_,_ for
E— {" Debit account)
(Take rmoney from slot j join

v

Show balance

merge "y

Eject card

<

end

	Slide 1: Unified Modeling Language
	Slide 2: What is UML?
	Slide 3: Why UML ?
	Slide 4: 1. Use Case Diagrams
	Slide 5: Example
	Slide 6: Use Case Diagram for Clinical Appointment
	Slide 7: Use Case Diagrams Extensions
	Slide 8
	Slide 9: 2. Class Diagrams
	Slide 10
	Slide 11: Class Diagrams - Relationships
	Slide 12: Class Diagrams - Relationships
	Slide 13: Class Diagrams - Relationships
	Slide 14: Class Diagrams – Relationships - Composition
	Slide 15: Class Diagrams – Relationships - accessibility and scope
	Slide 16: Class Diagrams – Dependencies and constraints
	Slide 17: Class Diagrams – Interfaces and stereotypes
	Slide 18: Class Diagrams – Interfaces and stereotypes
	Slide 19: 3. Packages and Object Diagram
	Slide 20
	Slide 21: Packages and Object Diagram
	Slide 22: 4. Component and Deployment Diagram
	Slide 23: 5. Sequence Diagrams
	Slide 24: Sequence Diagrams - Example
	Slide 25: Sequence Diagrams
	Slide 26: Sequence diagrams with asynchronous messages
	Slide 27: Sequence diagrams with asynchronous messages - Example
	Slide 28: Sequence diagrams UML message conventions.
	Slide 29: 6. Collaboration Diagrams
	Slide 30: Collaboration Diagrams
	Slide 31: 7. State chart Diagrams
	Slide 32: State chart Diagrams – concurrency and synchronization
	Slide 33: 8. Activity Diagrams

