
Unified Modeling Language

Gheorghe Aurel Pacurar

UML 2.0 fundamentals

What is UML?

1. Unified Modeling Language

2. Domain - the World of the Problem

3. Model - the Solution for Problem - consists of:

4. Objects (Attributes, Behaviors => State)

5. Messages (Interactions between Objects)

6. UML - a set of static and dynamic Diagrams for a model
graphical representation:

Static Diagrams Dynamic Diagrams

No time represented Time represented

Use case Sequence

Class - package,objects Collaboration

Component Statechart

Why UML ?

Unified Modeling
Language:

Is the software
blueprint language for:
• Analysts
• Designers
• Programmers

1. Use Case Diagrams

A Use Case is a summary of scenarios for a
single task or goal.

A Scenario is an example of what happens
when an actor (someone) plays (interacts) in a
show (with the system).

Example

Clinic

Patient SchedulerReceptionist Appointment

 Book

Call a Clinic, receive the Call

Find

nearest

free time

slot

Find

nearest

free time

slot

Scenario: „A
patient calls the

Clinic to make an
appointment for a

yearly checkup. The
receptionist finds
the nearest empty

time slot in the
appointment book
and schedules the

appointment for
that time slot“

After analysis, we
can find the

following:

Actors: Patient,
Clinic,

Receptionist,
Appointment Book,

Scheduler

Interactions: The
patient calls the

Clinic to make an
appointment. The

Receptionist
receives the

Patient‘s call, finds
the nearest free
time slot in the

Appointment Book,
and schedules the
Appointment in the
Appointment Book.

Use Case Diagram for Clinical
Appointment

Use Case Diagrams
Extensions

Generalization : one Child Use Case is only a special kind of
another Parent Use Case

Include relationship factor use cases into additional ones.

The extended relationship indicates that an Extended Use
Case is a variation of another Base Use Case. The Base Use
Case must define an Extension Point that determines when
the Extended Use Case is appropriate.

Use Case Diagrams Extensions

2. Class Diagrams

It gives an overview of a system by showing its classes and their
relationships.

Class diagrams are static -- they display what interacts but not
what happens when they do interact.

UML class notation is a rectangle divided into three parts: class
name, attributes, and operations. Names of abstract classes are in
italics. Relationships between classes are the connecting links.

Example

Class Diagrams - Relationships

A class diagram has three kinds of relationships:

Association -- a relationship between instances of the two classes. There is an association between two
classes if an example of one class must know about the other to perform its work. In a diagram, an association
is a link connecting two classes.
An association has two ends. An end may have a role name to clarify the nature of the association (for
example, an OrderDetail is a line item of each Order).

Aggregation -- an association in which one class belongs to a collection. An
aggregation has a diamond end pointing to the part containing the whole (In our
diagram, Order has a collection of OrderDetails).

Generalization -- an inheritance link indicating one class is a superclass of the other. A
generalization has a triangle pointing to the superclass (Payment is a superclass of
Cash, Check, and Credit).

Class Diagrams -
Relationships

• A navigability arrow on an association :

• Shows which direction the association can be
traversed or queried (An OrderDetail can be
queried about its Item, but not vice versa).

• The arrow also lets you know who "owns" the
association's implementation;
(in this case, OrderDetail has an Item).

• Associations with no navigability arrows are
bi-directional.

• The multiplicity of an association end :

• Is the number of possible class instances
associated with a single instance of the other
end.

• Are single numbers or ranges of numbers (In
our example, there can be only one Customer
for each Order, but a Customer can have any
number of Orders).

Multiplicities Meaning

0..1 zero or one instance.
The notation n . . m
indicates n to m
instances.0

..* or * no limit on the
number of instances
(including none).

1 exactly one instance

1..* at least one instance

Class Diagrams - Relationships

• All class diagrams have classes, links, and multiplicities. But a class
diagram can show even more information. We've already looked at:
• generalization,
• aggregation, and
• navigability.
• On this page, we will look at these additional items as well.
• compositions
• class member visibility and scope
• dependencies and constraints
• interfaces

Class Diagrams – Relationships - Composition

Composition is a strong association in which the
part can belong to only one whole -- the part cannot
exist without the whole.

This diagram shows that a BoxOffice belongs to exactly one MovieTheater. Destroy

the MovieTheater and the BoxOffice goes away! The collection of Movies is not so

closely bound to the MovieTheater

Class Diagrams – Relationships - accessibility and scope
• The class notation is a 3-piece rectangle with the class name, attributes,

and operations.
• Attributes and operations can be labeled according to access and scope.

UML Scope and Visibility Conventions:

1.Static members are underlined. Instance members are not.

2.The operations follow this form:

<access specifier> <name> (<parameter list>) : <return type>

3.The parameter list shows each parameter type preceded by a colon.

Symbol Access

+ public

- private

protected

* appear in front of

each member.

Access specifiers*

Class Diagrams – Dependencies and constraints
A dependency is a relation between two classes in which a change in one may

force changes in the other. Dependencies are drawn as dotted lines (In the class
diagram below, Co_op depends on Company. If you decide to modify Company,

you may have to change Co_op too).

A constraint is a condition that every implementation of the design must satisfy.
Constraints are written in curly braces { }(The constraint on our diagram indicates

that a Section can be part of a CourseSchedule only if it is not canceled).

Class Diagrams – Interfaces and stereotypes
An interface is a set of operation signatures and a communication protocol.

A class with operations matching those in an interface is an implementation (or realization) of the
interface.
Stereotypes, which provide a way of extending UML, are new kinds of model elements created from existing kinds. A stereotype name is
written above the class name. Ordinary stereotype names are enclosed in guillemots, which look like pairs of angle braces. An interface
is a special kind of stereotype.

The class diagram is a
model of a professional
conference. The classes of
interest to the conference
are SessionTalk, a single
presentation, and Session,
a one-day collection of
related SessionTalks. The
ShuttleSchedule, with its
list of ShuttleStops, is
essential to the attendees
staying at remote hotels.
The diagram has one
constraint: the
ShuttleStops are ordered.

Class Diagrams – Interfaces and stereotypes

There are two
acceptable notations
for interfaces in the
UML.
The first was illustrated
in the previous slide.
The second uses the
lollipop or circle
notation.

An interface is a set of operation signatures and a communication protocol.

A class with operations matching those in an interface is an implementation (or realization) of the
interface.

Stereotypes, which provide a way of extending UML, are new kinds of model elements created from existing kinds. A
stereotype name is written above the class name. Ordinary stereotype names are enclosed in guillemots, which look like
pairs of angle braces. An interface is a special kind of stereotype.

3. Packages and
Object Diagram

• To simplify complex class
diagrams, you can group
classes into packages.

• A package is a collection of
logically related UML
elements.

• The dotted arrows are
dependencies. One package
depends on another if
changes in the other could
force changes in the first.

Example
This small class diagram shows that a university

Department can contain lots of other Departments.

Packages and Object Diagram

• The object diagram below
instantiates the class diagram,
replacing it by a concrete
example.

• Each rectangle in the object
diagram corresponds to a
single instance. Instance
names are underlined in UML
diagrams. Class or instance
names may be omitted from
object diagrams as long as the
diagram meaning is still clear.

4. Component and Deployment Diagram
• A component is a code module. Component diagrams are physical

analogs of class diagram.
• Deployment diagrams show the physical configurations of software and

hardware.
• The physical hardware is made up of nodes. Each component belongs on a

node.

5. Sequence Diagrams

Interaction diagrams are dynamic diagrams that describe how objects
collaborate.

A sequence diagram is an interaction diagram that details how operations
are carried out, such as what messages are sent and when.

Sequence diagrams are organized according to time.

The time progresses as you go down the page.

The objects involved in the operation are listed from left to right according
to when they take part in the message sequence.

Sequence
Diagrams -
Example

• The example is a sequence diagram for
making a hotel reservation. The object
initiating the sequence of messages is a
Reservation window.

Sequence Diagrams

• The Reservation window sends a makeReservation() message to a HotelChain. The
HotelChain then sends a makeReservation() message to a Hotel. If the Hotel has
available rooms, it makes a Reservation and a Confirmation.

• Each vertical dotted line is a lifeline, representing the time that an object exists.
Each arrow is a message call. An arrow goes from the sender to the top of the
activation bar of the message on the receiver's lifeline.

• The activation bar represents the duration of execution of the message.

• In our diagram, the Hotel issues a self-call to determine if a room is available. If so,
the Hotel creates a Reservation and a Confirmation. The asterisk on the self-call
means iteration (to ensure the room is available for each day of the stay in the hotel).
The expression in square brackets, [], is a condition.

• The diagram has a clarifying note, text inside a dog-eared rectangle. Notes can be
put into any UML diagram.

Sequence diagrams with
asynchronous messages

• A message is asynchronous if it allows its sender to send
additional messages while processing the original. The timing of
an asynchronous message is independent of the timing of the
intervening messages.

The following sequence diagram illustrates the action of a nurse
requesting a diagnostic test at a medical lab. There are two
asynchronous messages from the Nurse:

1)Ask the MedicalLab to reserve a date for the test and

2)Ask the InsuranceCompany to approve the test.
The order in which these messages are sent or completed is
irrelevant. If the InsuranceCompany approves the test, then the
Nurse will schedule the test on the date supplied by the MedicalLab.

Sequence
diagrams with
asynchronous
messages -
Example

Sequence diagrams
UML message conventions.

6. Collaboration
Diagrams

• Collaboration diagrams are also interaction
diagrams.

• They convey the same information as sequence
diagrams, but they focus on object roles instead
of the times that messages are sent.

• In a sequence diagram, object roles are the
vertices, and messages are the connecting links.

Collaboration
Diagrams

• The object-role rectangles are labeled with either class or
object names (or both). Class names are preceded by colons
(:).

• Each message in a collaboration diagram has a sequence
number. The top-level message is numbered 1. Messages at
the same level (sent during the same call) have the same
decimal prefix but suffixes of 1, 2, etc., according to when
they occur.

7. State chart
Diagrams

• Objects have behaviors and states.
• The state of an object depends on its current activity or

condition.
• A state chart diagram shows the possible states of the

object and the transitions that cause a state change.
• From each state comes a complete set of transitions that

determine the subsequent state.

State chart
Diagrams –
concurrency and
synchronization

• States in a state chart diagram can be nested.
Related states can be grouped into a single
composite state. Nesting states is necessary
when an activity involves concurrent or
asynchronous sub-activities.

8. Activity Diagrams

• Activity diagrams can
be divided into object
swim lanes that
determine which
object is responsible
for which activity. A
single transition
connects each activity
to the next activity.

• A transition may
branch into two or
more mutually
exclusive transitions.
Guard expressions
(inside []) label the
transitions from a
branch. A branch and
its subsequent merge
marking the end of the
branch appear in the
diagram as hollow
diamonds.

• A transition may fork
into two or more
parallel activities. The
fork and the
subsequent join of the
threads coming out of
the fork appear in the
diagram as solid bars.

	Slide 1: Unified Modeling Language
	Slide 2: What is UML?
	Slide 3: Why UML ?
	Slide 4: 1. Use Case Diagrams
	Slide 5: Example
	Slide 6: Use Case Diagram for Clinical Appointment
	Slide 7: Use Case Diagrams Extensions
	Slide 8
	Slide 9: 2. Class Diagrams
	Slide 10
	Slide 11: Class Diagrams - Relationships
	Slide 12: Class Diagrams - Relationships
	Slide 13: Class Diagrams - Relationships
	Slide 14: Class Diagrams – Relationships - Composition
	Slide 15: Class Diagrams – Relationships - accessibility and scope
	Slide 16: Class Diagrams – Dependencies and constraints
	Slide 17: Class Diagrams – Interfaces and stereotypes
	Slide 18: Class Diagrams – Interfaces and stereotypes
	Slide 19: 3. Packages and Object Diagram
	Slide 20
	Slide 21: Packages and Object Diagram
	Slide 22: 4. Component and Deployment Diagram
	Slide 23: 5. Sequence Diagrams
	Slide 24: Sequence Diagrams - Example
	Slide 25: Sequence Diagrams
	Slide 26: Sequence diagrams with asynchronous messages
	Slide 27: Sequence diagrams with asynchronous messages - Example
	Slide 28: Sequence diagrams UML message conventions.
	Slide 29: 6. Collaboration Diagrams
	Slide 30: Collaboration Diagrams
	Slide 31: 7. State chart Diagrams
	Slide 32: State chart Diagrams – concurrency and synchronization
	Slide 33: 8. Activity Diagrams

